General document LSTM Networks.
Machine Learning LSTM Networks. Usefull Machine Learning Software. (for a change)
Resume Document
Warnings: There are some attempts at humor here.
Recurrent Neural Networks (RNN)
Long-Short Term Memory (LSTM) Network
Recurrent Neural Networks (RNN)
- Image caption
- Secuence classfication
- Translation
- Named entity recognition
_
Recurrent Neural Networks have loops
Humans don’t start their thinking from scratch every second.
Recurrent neural networks address this issue. They are networks with loops in them, allowing information to persist.
_
An unrolled recurrent neural network.
A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.
_
The Problem of Long-Term Dependencies
Predict the next word:
- the clouds are in the sky,
- I grew up in France… I speak fluent French.
_
LSTM Networks
Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of RNN, capable of learning long-term dependencies.
_
The repeating module in a standard RNN contains a single layer.
_
The repeating module in an LSTM contains four interacting layers.
_
More Neurons,Layers: More Deep Learning.
Node.js
Es un entorno de ejecución para JavaScript basado en el motor V8 de Google y actualmente cuenta con el ecosistema de librerias de código abierto mas grande del mundo llamada NPM. Es un entorno de ejecución orientado a eventos.
_
Qué es y para que sirve Node.js?
Node.js es un entorno de ejecución de JavaScript de lado del servidor, el cual permite la creación de aplicaciones de red altamente escalables.
_
Qué es y para que sirve Node.js?
Se basa en Programación Orientada a Eventos Asíncronos. Node.js cambia la manera de como conectarse a un servidor, ya que cada conexión dispara un evento especifico dentro del motor y se afirma que puede soportar decenas de miles de conexiones concurrentes sin bloqueos.
_
JavaScript en el servidor
Lenguaje de programación potente
Posee un excelente modelo de eventos asincrónicos
Curva de aprendizaje reducida debido al previo conocimiento de muchos desarrolladores
_
Ventajas
Gran capacidad de tolerancia a la cantidad de peticiones simultaneas
Existencia de gran cantidad de módulos para casi todas las necesidades que se tengan gracias a NPM
Menor costo de infraestructura
Comunidad creciente dispuesta a resolver dudas y mostrar nuevas maneras de uso
Demo IAMDinosaur
_
Chrome/Chromium offline script
_
Synaptic
_
RobotJs
_
Sensors
_
Actuators
_
Neural Network
The distance affects the input
_
_
_
Genetic Algorithm
_
_
_
_
_
_
Demo T-Rex
_
Chrome/Chromium offline script
_
Synaptic
Useful, Reference and Future links
_
Useful, Reference and Future links
_
Useful, Reference and Future links
- convnetjs
- THE MNIST DATABASE
- Neural Networks in Javascript
- Top Machine Learning Libraries for Javascript
_
Useful, Reference and Future links
- Playing Atari with Deep Reinforcement Learning
- Understanding LSTM Networks
- 5 Machine Learning Projects You Can No Longer Overlook
- Top 10 Machine Learning Projects on Github
_
Useful, Reference and Future links
- Lian Li: Machine Learning with Node.js - JSUnconf 2016
- Machine learning is not the future - Google I/O 2016
- Machine Learning Tutorial for JavaScript Hackers: Tips On Gathering and Pre-Processing Data
- ConvNetJS – Deep Learning in your browser
_
Useful, Reference and Future links
_
Useful, Reference and Future links
- IBM Watson: Using the Visual Recognition service
- Neural Networks in JavaScript
- Introduction to Artificial Neural Networks
- A ‘Brief’ History of Neural Nets and Deep Learning
_
Useful, Reference and Future links
_
Useful, Reference and Future links
⤧ Next post General document Image Recognition. ⤧ Previous post Presentations: Final presentation LSTM Networks.